# Static Single Assignment form

Static Single Assignement (SSA) form is a property of an Intermediate Representation where each variable is assigned exactly once and it is defined before it is used, and existing variables are split into versions.

\begin{align} \bbox[4pt, border: 1pt solid grey] { \begin{align} y = 1 \\ y = 2 \\ x = y \end{align} } \bbox[8pt] { \rightarrow } \bbox[4pt, border: 1pt solid grey] { \begin{align} y_1 & = 1 \\ y_2 & = 2 \\ x_1 & = y_2 \end{align} } \end{align}

This technique enables lots of compiler optimizations.

## Converting to SSA

In order to convert an IR to SSA form, the target of each assignment should be replaced with a new variable and each use of these variables should be substituted with the version of that variable reaching that point.

## $\phi$ (phi) function

A $\phi$ function is a special statement which generates a new definition of a variable depending on the control flow. In the last block depicted below, we do not know which version of y to use:

\bbox[4pt, border: 1pt solid grey] { \begin{align} x_1 & = 5 \\ x_2 & = x_1 - 3 \\ x_2 & \lt 3 \end{align} } \\ \bbox[margin-right:40pt]{\downarrow} \bbox[]{\downarrow} \\ \begin{align} \bbox[4pt, border: 1pt solid grey] { \begin{align} y_1 & = x_2 * 2 \\ w_1 & = y_1 \end{align} } \bbox[margin-right:32pt]{} \bbox[4pt, border: 1pt solid grey] { \begin{align} y_2 & = x_2 - 3 \end{align} } \end{align} \\ \bbox[margin-right:40pt]{\downarrow} \bbox[]{\downarrow} \\ \bbox[4pt, border: 1pt solid grey] { \begin{align} w_2 & = x_2 - y_\color{red}{?} \\ z_1 & = x_2 - y_\color{red}{?} \end{align} }

We use a $\phi$ function, which selects the right version according to the flow, so the last block becomes:

\begin{align} \bbox[4pt, border: 1pt solid grey] { \begin{align} y_3 & = \phi(y_1, y_2) \\ w_2 & = x_2 - y_3 \\ z_1 & = x_2 + y_3 \end{align} } \end{align}

In order to determine where to insert a Phi function and for which variables, we use the concept of dominance frontiers.

4 May 2019